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Abstract. The bound-state spectrum of a spinless particle in a Euclidean Taub-NUT metric 
with negative mass parameter (which also describes asymptotic monopole scattering) is 
derived from geometric quantisation. 

The scattering problem of slow Bogomolny-Prasad-Sommerfield ( BPS) monopoles 
leads, for large-separations, to studying the geodesics in Euclidean Taub-NUT space, 

ds2 1+- [dr2+r2(d62+sin2 6 dd2) ]+(  l+y)-' (d$+4m cos 6 d4) '  ( 4rm> 
with mass parameter m = -f [l]. To the two cyclic variables I/.I and t are associated 
the conserved quantities q = (1 + 4m/ r)-l( IL3 + 4m cos 64') and E = 
f( 1 + 4m/ r)(  ro2 + q2) ,  interpreted as relative electric charge and energy, respectively. 
Angular momentum, 

J=  r x p + ( 4 m q ) r / r  where p = (1 +4m/r ) ro  (2) 
is also conserved. The clue to finding the classical as well as the quantum solutions 
has been the discovery [l] of a conserved Runge-Lenz-type vector, 

K = p  x J - 4 m ( E  - q2)r/r. (3) 
Indeed, using the crucial relations 

K 2 =  (2E -q2)[J2-(4mq)2]+4mq2(E -q2)'  K .  J = -(4m)'q(E - q 2 )  

a simple calculation shows that the trajectories are conic sections, namely ellipses, 
parabolas or hyperbolae depending on the energy being smaller, equal to or larger 
than $12 [ l ,  21. (Notice that E < $12 is only possible for m < 0.) 

Here we shall only be concerned with the bound states. The spectrum has been 
found in a variety of ways: either by solving the Schrodinger equation [ 11 or by relating 
the problem to a harmonic oscillator [3] or finding a spectrum generating o (2 , l )  
algebra [4] or by supersymmetric WKB [4, 51, or by applying Pauli's algebraic method 
[2,6]. The relative charge becomes quantised, q = s/4m, s = 0, *.f, *l ,  . . . and the 
spectrum is 

E =(4m)-2(n2-s2)1/2[n -(n2-s2) ' /*] n =Is l+l ,  I s ( + & .  . . ( 5 )  

and 
(4) 

with degeneracy ( n 2  - s 2 ) .  
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In this note we give yet another method, namely by following the recipe of geometric 
quantisation [7-111. For each fixed value E < q2/2, let us consider in fact the rescaled 
Runge-Lenz vector 

M=(q2-2E) - ' l 2  K. (6) 
The relations (4) then become 

M2+J2=(4m)2[q2+(n /4m)2]  and M .  J = -4mqn (7) 

where we have introduced the (so far real) number 

n =4m(E  -q2)/(q2-2E)l'*. 

It is now convenient to introduce the two vectors 

A ,  = ( M *  J ) /2 .  (9) 
By equation (7) both of these vectors have constant length, namely 

where we have introduced the notation 14mql=s. So A ,  describe two 2-spheres. 
Gibbons and Ruback [3] demonstrate that A+ and A-  map M E ,  the space of motions 
with constant charge and energy symplectomorphically on ( S 2 ) +  x ( S 2 ) - ,  the product 
of two 2-spheres of radius p+ and p - ,  endowed with the sum R+ + s1- of the canonical 
sympletic structures of the two 2-spheres. Geometric quantisation requires now [7,8] 
that both radii be half-integers, 

P, = = ( n  f s)/2 (10) 

2p ,  = n, for suitable positive integers n, . (11) 
By equation (10) this requires n i s = n,, proving that both n = ( n +  + n-)/2 and s = 
(n, - n-)/2 are half-integers; n and s are furthermore simultaneously integers or 
half-integers. Equation (8) can be solved then for E to yield the correct spectrum ( 5 ) .  

The above method is, in fact, just a geometric version of Pauli's procedure: the 
Poisson brackets of angular momentum J and the rescaled Runge-Lenz vector M are 
in fact 

I J z ,  J k I E i k n J n  { J z ,  M k ) =  EhMn {Mz, Mk) = & i k n J n  (12) 
so they form an o(4) algebra [2,3]. The generators A ,  just decompose this o(4) into 
the sum of two independent o(3). The vectors A ,  become operators under quantisation, 
with still close to an o(4) algebra; and those states with fixed charge q = s / 4 m  and 
energy E carry an irreducible representation space of A , .  The degeneracy of the 
energy levels is the dimension of this representation space. 

This representation space can be constructed out of polarised sections a suitable 
line bundle L over ME = (S2)+ x (S2)- [7-111. The line bundle L is the tensor product 
L1 0 L2 of those over the two independent spheres. For each of the spheres, L, is itself 
the tensor product of the pre-quantum line bundle (which only exists for half-integer 
radii m/2) with the bundle of half forms. 

It is well known (see, e.g., [ 113) that over the 2-sphere the half-form bundle has 
Chern class -1. Consequently, for a sphere of radius m/2, the representation space 
is ( m + l ) -  1 = m dimensional. Explicitly, for a sphere of radius m/2, z =  
(m/2) exp(iq3) tan( 0/2) is a complex coordinate. Choosing the antiholomorphic 
polarisation, any wavefunction is a linear combination of 
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To sum up, the degeneracy of the nth energy level (5) of the Taub-NuT problem 
is (2p+)(2p-) = ( n  + s ) ( n  - s) = n 2  - s2. The degeneracy is identical to that found in 
[ 113 for a system consisting of a Dirac monopole + Coulomb + suitably chosen l /r2 
potential. This is not a coincidence: the two systems are ‘hiddenly’ symplectomorphic 
[ 121. The spectra are different because the relation of the two systems is complicated. 
They are, rather, the quantum numbers n and s which are the same. 

One of us (PAH) is indebted to J H Rawnsley for a discussion on half-forms. 
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