Monopole scattering spectrum from geometric quantisation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 212835
(http://iopscience.iop.org/0305-4470/21/12/024)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 12:22

Please note that terms and conditions apply.

COMMENT

Monopole scattering spectrum from geometric quantisation

B Cordani \dagger, L Gy Fehér \ddagger and P A Horváthy§
\dagger Istituto Matematico dell’Università, Via Saldini 50, I-20133 Milano, Italy
\# Bolyal Institut, JATE, H-6720 Szeged, Hungary
§ Departement de Mathematiques et d'Informatique, U A au CNRS no 399, Université, F-57045 Metz, France

Received 4 March 1988

Abstract

The bound-state spectrum of a spinless particle in a Euclidean Taub-nut metric with negative mass parameter (which also describes asymptotic monopole scattering) is derived from geometric quantisation.

The scattering problem of slow Bogomolny-Prasad-Sommerfield (BPS) monopoles leads, for large-separations, to studying the geodesics in Euclidean Taub-nut space,
$\mathrm{d} s^{2}\left(1+\frac{4 m}{r}\right)\left[\mathrm{d} r^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right]+\left(1+\frac{4 m}{r}\right)^{-1}(\mathrm{~d} \psi+4 m \cos \theta \mathrm{~d} \phi)^{2}$
with mass parameter $m=-\frac{1}{2}$ [1]. To the two cyclic variables ψ and t are associated the conserved quantities $q=(1+4 m / r)^{-1}\left(\psi^{3}+4 m \cos \theta \phi^{\circ}\right)$ and $E=$ $\frac{1}{2}(1+4 m / r)\left(r^{\circ 2}+q^{2}\right)$, interpreted as relative electric charge and energy, respectively. Angular momentum,

$$
\begin{equation*}
\boldsymbol{J}=\boldsymbol{r} \times \boldsymbol{p}+(4 m q) \boldsymbol{r} / \boldsymbol{r} \quad \text { where } \quad \boldsymbol{p}=(1+4 m / \boldsymbol{r}) \boldsymbol{r}^{\circ} \tag{2}
\end{equation*}
$$

is also conserved. The clue to finding the classical as well as the quantum solutions has been the discovery [1] of a conserved Runge-Lenz-type vector,

$$
\begin{equation*}
\boldsymbol{K}=\boldsymbol{p} \times \boldsymbol{J}-4 m\left(E-q^{2}\right) \boldsymbol{r} / r . \tag{3}
\end{equation*}
$$

Indeed, using the crucial relations
$\boldsymbol{K}^{2}=\left(2 E-q^{2}\right)\left[\boldsymbol{J}^{2}-(4 m q)^{2}\right]+4 m q^{2}\left(E-q^{2}\right)^{2} \quad$ and $\quad \boldsymbol{K} \cdot \boldsymbol{J}=-(4 m)^{2} \boldsymbol{q}\left(E-q^{2}\right)$
a simple calculation shows that the trajectories are conic sections, namely ellipses, parabolas or hyperbolae depending on the energy being smaller, equal to or larger than $q^{2} / 2[1,2]$. (Notice that $E<q^{2} / 2$ is only possible for $m<0$.)

Here we shall only be concerned with the bound states. The spectrum has been found in a variety of ways: either by solving the Schrödinger equation [1] or by relating the problem to a harmonic oscillator [3] or finding a spectrum generating o(2,1) algebra [4] or by supersymmetric wкв [4,5], or by applying Pauli's algebraic method $[2,6]$. The relative charge becomes quantised, $q=s / 4 m, s=0, \pm \frac{1}{2}, \pm 1, \ldots$ and the spectrum is

$$
\begin{equation*}
E=(4 m)^{-2}\left(n^{2}-s^{2}\right)^{1 / 2}\left[n-\left(n^{2}-s^{2}\right)^{1 / 2}\right] \quad n=|s|+1,|s|+2, \ldots \tag{5}
\end{equation*}
$$

with degeneracy $\left(n^{2}-s^{2}\right)$.

In this note we give yet another method, namely by following the recipe of geometric quantisation [7-11]. For each fixed value $E<q^{2} / 2$, let us consider in fact the rescaled Runge-Lenz vector

$$
\begin{equation*}
\boldsymbol{M}=\left(q^{2}-2 E\right)^{-1 / 2} \boldsymbol{K} \tag{6}
\end{equation*}
$$

The relations (4) then become

$$
\begin{equation*}
\boldsymbol{M}^{2}+\boldsymbol{J}^{2}=(4 m)^{2}\left[q^{2}+(n / 4 m)^{2}\right] \quad \text { and } \quad \boldsymbol{M} \cdot \boldsymbol{J}=-4 m q n \tag{7}
\end{equation*}
$$

where we have introduced the (so far real) number

$$
\begin{equation*}
n=4 m\left(E-q^{2}\right) /\left(q^{2}-2 E\right)^{1 / 2} . \tag{8}
\end{equation*}
$$

It is now convenient to introduce the two vectors

$$
\begin{equation*}
\boldsymbol{A}_{ \pm}=(\boldsymbol{M} \pm \boldsymbol{J}) / 2 \tag{9}
\end{equation*}
$$

By equation (7) both of these vectors have constant length, namely

$$
\begin{equation*}
\rho_{ \pm}=\left|\boldsymbol{A}_{ \pm}\right|=(n \pm s) / 2 \tag{10}
\end{equation*}
$$

where we have introduced the notation $|4 m q|=s$. So $\boldsymbol{A}_{ \pm}$describe two 2-spheres. Gibbons and Ruback [3] demonstrate that \boldsymbol{A}_{+}and \boldsymbol{A}_{-}map \boldsymbol{M}_{E}, the space of motions with constant charge and energy symplectomorphically on $\left(\boldsymbol{S}^{2}\right)_{+} \times\left(\boldsymbol{S}^{2}\right)_{-}$, the product of two 2 -spheres of radius ρ_{+}and ρ_{-}, endowed with the sum $\Omega_{+}+\Omega_{-}$of the canonical sympletic structures of the two 2 -spheres. Geometric quantisation requires now [7, 8] that both radii be half-integers,

$$
\begin{equation*}
2 \rho_{ \pm}=n_{ \pm} \quad \text { for suitable positive integers } n_{ \pm} . \tag{11}
\end{equation*}
$$

By equation (10) this requires $n \pm s=n_{ \pm}$, proving that both $n=\left(n_{+}+n_{-}\right) / 2$ and $s=$ $\left(n_{+}-n_{-}\right) / 2$ are half-integers; n and s are furthermore simultaneously integers or half-integers. Equation (8) can be solved then for E to yield the correct spectrum (5).

The above method is, in fact, just a geometric version of Pauli's procedure: the Poisson brackets of angular momentum \boldsymbol{J} and the rescaled Runge-Lenz vector \boldsymbol{M} are in fact

$$
\begin{equation*}
\left\{J_{i}, J_{k}\right\} \varepsilon_{i k n} J^{n} \quad\left\{J_{i}, M_{k}\right\}=\varepsilon_{i k n} M^{n} \quad\left\{M_{i}, M_{k}\right\}=\varepsilon_{i k n} J^{n} \tag{12}
\end{equation*}
$$

so they form an $o(4)$ algebra $[2,3]$. The generators $\boldsymbol{A}_{ \pm}$just decompose this o(4) into the sum of two independent o(3). The vectors $\boldsymbol{A}_{ \pm}$become operators under quantisation, with still close to an $o(4)$ algebra; and those states with fixed charge $q=s / 4 m$ and energy E carry an irreducible representation space of \boldsymbol{A}_{\neq}. The degeneracy of the energy levels is the dimension of this representation space.

This representation space can be constructed out of polarised sections a suitable line bundle L over $M_{E} \approx\left(S^{2}\right)_{+} \times\left(S^{2}\right)_{-}[7-11]$. The line bundle L is the tensor product $L_{1} \otimes L_{2}$ of those over the two independent spheres. For each of the spheres, L_{i} is itself the tensor product of the pre-quantum line bundle (which only exists for half-integer radii $m / 2$) with the bundle of half forms.

It is well known (see, e.g., [11]) that over the 2 -sphere the half-form bundle has Chern class -1 . Consequently, for a sphere of radius $m / 2$, the representation space is $(m+1)-1=m$ dimensional. Explicitly, for a sphere of radius $m / 2, z=$ $(m / 2) \exp (\mathrm{i} \phi) \tan (\theta / 2)$ is a complex coordinate. Choosing the antiholomorphic polarisation, any wavefunction is a linear combination of

$$
\begin{equation*}
\Psi^{k}=\frac{z^{k}}{(1+z \bar{z})^{m / 2}}\left(\frac{\mathrm{~d} z \wedge \mathrm{~d} \bar{z}}{(1+z \bar{z})^{2}}\right)^{1 / 2} \quad k=0, m-1 \tag{13}
\end{equation*}
$$

To sum up, the degeneracy of the nth energy level (5) of the Taub-nut problem is $\left(2 \rho_{+}\right)\left(2 \rho_{-}\right)=(n+s)(n-s)=n^{2}-s^{2}$. The degeneracy is identical to that found in [11] for a system consisting of a Dirac monopole + Coulomb + suitably chosen $1 / r^{2}$ potential. This is not a coincidence: the two systems are 'hiddenly' symplectomorphic [12]. The spectra are different because the relation of the two systems is complicated. They are, rather, the quantum numbers n and s which are the same.

One of us (PAH) is indebted to J H Rawnsley for a discussion on half-forms.

References

[1] Gibbons G W and Manton N S 1986 Nucl. Phys. B 274183
Atiyah M F and Hitchin N 1988 The Geometry and Dynamics of Magnetic Monopoles (Princeton, NJ: Princeton University Press)
[2] Fehér L Gy and Horváthy P A 1987 Phys. Lett. 182B 183; (Erratum) 188B 512
[3] Gibbons G W and Ruback P 1987 Phys. Lett. 188B 226; 1987 Ecole Normale Preprint LPTENS 87/16
[4] Cordani B, Fehér L Gy and Horváthy P A 1988 Phys. Lett. 201B 481
[5] Comtet A, Bandrauk A D and Campbell D K 1985 Phys. Lett. 150B 159
[6] Pauli W 1926 Z. Phys. 3633
[7] Souriau J-M 1969 Structure des Systemes Dynamiques (Paris: Dunod)
[8] Simms D J and Woodhouse N M J 1976 Lectures on Geometric Quantization (Springer Lecture Notes in Physics 53) (Berlin: Springer)
[9] Souriau J-M 1974 Symp. Math. 14343
[10] Simms D J 1973 Proc. Camb. Phil. Soc. 73489
[11] Mladenov I M and Tsanov V V 1987 J. Phys. A: Math. Gen. 205865
[12] Cordani B, Fehér L Gy and Horváthy P A 1988 in preparation

